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Cooperative scattering and radiation pressure force in dense atomic clouds
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2Dipartimento di Fisica, Università Degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy
3Instituto de Fı́sica de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil

(Received 30 March 2011; published 20 July 2011)

Atomic clouds prepared in “timed Dicke” states, i.e. states where the phase of the oscillating atomic dipole
moments linearly varies along one direction of space, are efficient sources of superradiant light emission [Scully
et al., Phys. Rev. Lett. 96, 010501 (2006)]. Here, we show that, in contrast to previous assertions, timed Dicke
states are not the states automatically generated by incident laser light. In reality, the atoms act back on the
driving field because of the finite refraction of the cloud. This leads to nonuniform phase shifts, which, at higher
optical densities, dramatically alter the cooperative scattering properties, as we show by explicit calculation of
macroscopic observables, such as the radiation pressure force.
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I. INTRODUCTION

The fact that ensembles of point-like scatterers respond
collectively to incident radiation has been well-known since
the seminal paper of Dicke [1]. The collective phenomenon,
termed superradiance, has been the topic of several theoretical
and experimental works. However, the question about the
exact nature of the state generated by the radiation traveling
through the ensemble has only been raised recently. Scully and
coworkers [2] pointed out that the dipole moments of scatterers
distributed along the incident beam’s optical axis are excited
in phase with beam’s propagating phase front. The resulting
“timed Dicke” state emits light predominantly into forward
direction, provided the ensemble size is large compared to the
radiation wavelength [3].

This simple picture, however, only holds at low optical
densities. At high optical densities and spherically symmetric
ensembles, the refraction index of the scattering medium
delays the propagation of the pump beam and distorts its phase
front. This distortion can have a significant impact on any
macroscopic observable of the system, such as the angular
distribution of the scattered radiation, the phase-front of the
transmitted beam, or the force acting on the center-of-mass of
the ensemble.

The aim of this paper is to calculate the correct state
generated in an ensemble of two-level systems, e.g., an atomic
cloud, by interaction with a weak laser beam and how this
state cooperatively scatters the incident light. Cooperative
scattering by many atoms has been studied extensively in the
past, both classically and quantum-mechanically. Classically,
scattering at extended objects is described as Mie scattering,
showing resonances induced by the boundary conditions that
the target imposes to the incident light field [4]. Quantum-
mechanically, Dicke [1] has shown that when two-level atoms
are confined inside a volume much smaller than a radiation
wavelength, the emission can be superradiant or subradiant.
How the classical and quantum pictures are linked has been
demonstrated at the example of a sample of weakly excited
atoms [5,6]. More precisely, when a single atom out of N is
excited, the Dicke symmetric state of maximum cooperation
radiates superradiantly, i.e., at a decay rate proportional to N .
Cooperative effects related to the superradiant and directional

emission by an extended ensemble of atoms in a timed
symmetric Dicke state have been observed in the radiation
pressure force acting on a large cloud of atoms driven by
a resonant radiation field. Depending on the detuning of
the incident radiation frequency from atomic resonance, the
radiation pressure force may be either drastically reduced due
to both increased forward scattering and a reduced scattering
cross section [3,7], or even enhanced if the cooperative Mie
scattering dominates over superradiance [8].

In this paper, we revisit the scattering by N atoms driven by
a constant uniform radiation field and emitting radiation into
free space. Our description assumes several approximations:
(1) weak excitation of the atomic ensemble (one atom out of
N is excited); (2) Markov or “rapid transit” approximation [5]
(photon time of flight through the cloud much shorter than
atomic decay time); (3) atoms frozen (zero temperature) and
motionless; (4) neglected dipole-dipole interactions and colli-
sions; (5) neglected nonresonant interactions, i.e. nonresonant
fluorescence, Van der Waals interactions, etc. Approximation
(3) excludes several cooperative effects related to atomic recoil
motion (e.g., collective atom recoil lasing [9,10] or matter
wave superradiance [11,12]) and thus neglects stimulated
scattering processes along preferential directions, as, for
instance, end-fire modes in Bose-Einstein condensates [13] or
optical cavity modes [14]. Neglecting atomic interactions [ap-
proximation (4)] is justified assuming atomic distances much
larger than an optical wavelength. The interesting opposite
regime (atoms closer than an optical wavelength) requires
the solution of the atomic equations with an exponential
interaction kernel [see Eq. (3)] and will be discussed in a future
publication.

We here determine the stationary solution for a spheri-
cal Gaussian distribution, as well as relevant macroscopic
quantities such as medium polarization, scattered radiation
intensity, and radiation pressure force. Our solution is based
on a solution of the eigenvalue problem in the smooth density
approximation. For large size samples, a continuous spectrum
limit allows us to obtain explicit analytical expressions for
such quantities, expressed as a function of experimentally
controllable parameters such as frequency and power of the
driving field, optical thickness, and size of the atomic sample.
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The paper is organized as follow: in Sec. II, the scatter-
ing problem is expressed in terms of multiparticle coupled
differential equations. In Sec. III, the continuous density
approximation is introduced and the solution for the atomic
field is found in terms of the discrete eigenvalues of the
interaction operator. Then, some macroscopic quantities of
importance are calculated in Sec. IV. A continuous spectrum
approximation for large atomic clouds performed in Sec. V
appears to be particularly suitable to evaluate macroscopic
quantities for arbitrarily large values of atomic density.
Section VI revises the radiation pressure force obtained
assuming a symmetric timed Dicke atomic state [3] and,
comparing this state to the exact solution, we find that phase
shifts induced by the atomic cloud’s refractive index are
at the origin of important corrections for the expectation
values of macroscopic quantities. Finally, numerical results
and conclusions are presented in Sec. VII.

II. COOPERATIVE SCATTERING PROBLEM

A system of two-level (g and e) atoms with resonant
frequency ωa and position rj , driven by an uniform laser beam
with electric field amplitude E0, frequency ω0, and wave vector
k0 = (ω0/c)êz, is described by the interaction Hamiltonian:

H = h̄�0

2

N∑
j=1

[σ̂j e
i(�0t−k0·rj ) + H.c.]

+ h̄

N∑
j=1

∑
k

gk(σ̂j e
−iωat + σ̂

†
j eiωat )

× [â†
ke

i(ωkt−k·rj ) + âke
−i(ωkt−k·rj )], (1)

where �0 = dE0/h̄ is the Rabi frequency of the incident
laser field, σ̂j is the lowering operator for atom j , âk is the
photon annihilation operator, and gk = (d2ωk/2h̄ε0Vph)1/2 is
the single-photon Rabi frequency, where d is the electric-
dipole transition matrix element and Vph is the photon volume.
A special case is when a single photon is present in the mode k,
as was extensively investigated in Refs. [2,15,16]. The total
system (atoms+photons) is assumed to be in a state of the
form [6]

|�〉 = α(t)|g1 . . . gN 〉|0〉k + e−i�0t

N∑
j=1

βj (t)|g1 . . . ej . . . gN 〉

× |0〉k +
∑

k

γk(t)|g1 . . . gN 〉|1〉k

+
N∑

m,n=1

εm<n,k(t)|g1 . . . em . . . en . . . gN 〉|1〉k, (2)

where �0 = ω0 − ωa . The first term corresponds to the initial
ground state without photons; the sum in the second term is
the state where a single atom has been excited by the classical
field. The third term corresponds to the atom returned to the
ground state having emitted a photon in the mode k, whereas
the last one corresponds to the presence of two excited atoms
and one virtual photon with “negative” energy. It is due to
the counter-rotating terms in the Hamiltonian Eq. (1) and
disappears when the rotating wave approximation (RWA) is

made. In the linear regime (i.e., α ≈ 1) and in the Markov
approximation (valid if the decay time is larger than the photon
time-of-flight through the atomic cloud), the problem reduces
to the following differential equation [19]:

β̇j =
(

i�0 − �

2

)
βj − i

�0

2
eik0·rj

+ i
�

2

∑
m�=j

exp(ik0|rj − rm|)
k0|rj − rm| βm, (3)

where � = Vphg
2
kk

2
0/πc is the single-atom spontaneous decay

rate. The kernel in the last term of Eq. (3) has a real component,
−(�/2)

∑
m�=j [sin(ρjm)/ρjm] (where ρjm = k0|rj − rm|), de-

scribing the collective atomic decay, and an imaginary compo-
nent, i(�/2)

∑
m�=j [cos(ρjm)/ρjm], describing the collective

Lamb shift due to short-range interaction between atoms,
induced by the electromagnetic field [19–21]. The latter
becomes significant when the number of atoms in a cubic
optical wavelength, nλ3, is larger than unity, in which case
the contribution from the virtual processes described by the
counter-rotating terms in the Hamiltonian becomes relevant.
Hence, for a sufficiently dilute system, such that N � σ 3,
where σ = k0σR and σR is the cloud size, the collective phase
shift arising from the imaginary part of the kernel in Eq. (3)
can be disregarded [22] and the scattering problem reduces to

β̇j =
(

i�0 − �

2

)
βj − i

�0

2
eik0·rj

− �

2

∑
m�=j

sin(k0|rj − rm|)
k0|rj − rm| βm, (4)

with initial condition βj (0) = 0, for j = 1, . . . ,N . Notice that
Eq. (3) deduced in the quantum mechanical description may be
also obtained classically when the two-level atoms are treated
as weakly excited classical harmonic oscillators [5,6]. For
this reason, the solution of Eq. (3) [or of the approximated
version, Eq. (4)] has a wider interest for the general problem
of collective radiation scattering.

As for the radiation field operator âk, it evolves according
the Heisenberg equation,

dâk

dt
= 1

ih̄
[âk,Ĥ ] = −igke

i(ωk−ωa )t
N∑

m=1

σ̂me−ik·rm, (5)

where the fast oscillating term proportional to exp[i(ωk +
ωa)t] has been neglected.

III. CONTINUOUS DENSITY APPROXIMATION

In light scattering experiments, disorder (or granularity)
plays a role when the number of atoms projected onto a cross
section perpendicular to the incident beam is small enough
so that a light mode focused down to the diffraction limit
(that is ∼λ2) would be able to resolve and count the atoms. In
other words, the stochastic fluctuations induced by the random
positions of the atoms can be neglected when the total number
of atoms N is larger than the number of modes ∼σ 2 that fit
into the cloud’s cross section, i.e., when the optical density is
b0 = 3N/σ 2 � 1. Under this hypothesis, the particles can be
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described by a smooth density n(r) and their probability to be
excited by a field β(r,t), so that Eq. (4) turns into

∂

∂t
β(r,t) =

(
i�0 − �

2

)
β(r,t) − i

�0

2
eik0·r

−�

2

∫
dr′n(r′)

sin(k0|r − r′|)
k0|r − r′| β(r′,t). (6)

In what follows we will consider only spherically symmetric
distributions n(r). Because of the linearity of Eq. (6), it is
convenient to introduce an eigenbasis of the coupling operator.
The functions jn(r)Ynm(θ,φ), with jns the spherical Bessel
functions and Ynm(θ,φ)s the spherical harmonics, appear as a
natural choice considering the following identity:

sin(k0|r − r′|)
k0|r − r′| = 4π

∞∑
n=0

n∑
m=−n

jn(k0r)Y ∗
nm(θ,φ)

×Ynm(θ ′,φ′)jn(k0r
′). (7)

In particular, the choice of the spherical harmonics guarantees
the orthogonality of the basis, since∫ 2π

0
dφ

∫ π

0
dθ sin θY ∗

nm(θ,φ)Yn′m′ (θ,φ) = δnn′δmm′ . (8)

Therefore, assuming the following decomposition for the field,

β(r,t) =
∞∑

n=0

n∑
m=−n

αnm(t)jn(k0r)Ynm(θ,φ), (9)

the projection of Eq. (6) along the eigenmodes leads to[
α̇nm − i�0αnm + �

2
(1 + λn)αn,m

]
jn(k0r) = − i

2
�nm,

(10)

where λn are the eigenvalues associated to modes n,

λn = 4π

∫ ∞

0
r2n(r)j 2

n (k0r)dr, (11)

whereas �nm corresponds to the projection of the incident
wave on mode (n,m),

�nm = �0

∫ 2π

0
dφ

∫ π

0
dθ sin θ Y ∗

nm(θ,φ) eik0r cos θ

= 2�0δm0

√
π (2n + 1)injn(k0r). (12)

Assuming the cloud is initially unexcited, i.e., αmn(0) = 0,
only spherically symmetric components with m = 0 will grow
so that, defining αn(t) ≡ αn0(t), Eq. (10) reduces to

α̇n −
[
i�0 − �

2
(1 + λn)

]
αn = −in+1

√
π (2n + 1)�0. (13)

Equation (13) straightforwardly integrates and, inserted in
Eq. (9), leads to the following expression for the excitation
field

β(r,θ,t) = �0

�

∞∑
n=0

in(2n + 1)jn(k0r)Pn(cos θ )

2δ + i(1 + λn)

× [1 − ei�0t e−(�/2)(1+λn)t ], (14)

where the scaled detuning δ = �0/� was introduced. Hence,
each mode n relaxes toward the steady-state with a characteris-
tic time τn = 1/�(1 + λn): the first modes relax very quickly
since λn is proportional to N , yet for the highest modes,
τn ∼ �−1, even if their macroscopic contribution is usually
small. Eventually, for times much longer than the single-atom
decay time �−1, the field tends toward a stationary state fully
characterized by the spectrum

βs(r,θ ) = �0

�

∞∑
n=0

in(2n + 1)

2δ + i(1 + λn)
jn(k0r)Pn(cos θ ). (15)

Notice that the set of eigenvalues in Eq. (11) is complete since
from the identity

∑
n�0(2n + 1)j 2

n (z) = 1, it follows that

∞∑
n=0

(2n + 1)λn = 4π

∫ ∞

0
r2n(r)dr = N, (16)

which corresponds to the trace of the coupling operator.

IV. MACROSCOPIC QUANTITIES

The description of the field βs(r,θ ) in terms of spectrum also
provides expressions for any macroscopic quantities, the most
relevant of which are calculated here below. These formulae
will be specialized to Gaussian clouds in the subsequent
section.

A. Average amplitude and probability of excitation

The average “phased” probability of the timed Dicke state
[19] and the excitation probability are, respectively,

〈βse
−ik0·r〉 = 2π

N

∫ π

0
dθ sin θ

∫ ∞

0
drr2n(r)βs(r,θ )e−ik0r cos θ

(17)

〈|βs |2〉 = 2π

N

∫ π

0
dθ sin θ

∫ ∞

0
drr2n(r)|βs(r,θ )|2. (18)

Inserting Eq. (15) and using the identities∫ 1

−1
dxPn(x)eiαx = 2injn(α),

(19)∫ 1

−1
dx Pm(x)Pn(x) = 2

2n + 1
δmn,

we obtain

〈βse
−ik0·r〉 = �0

�N

∞∑
n=0

(2n + 1)λn

2δ + i(1 + λn)
(20)

〈|βs |2〉 = �2
0

�2N

∞∑
n=0

(2n + 1)λn

4δ2 + (1 + λn)2
. (21)

B. Scattered field

The electric field radiated by the excited atoms reads, in the
smooth density limit (see Appendix A),

ES(r,θ,φ,t) = − dk2
0

4πε0r
eik0(r−ct)

∫
dr′n(r′)β(r′,t)e−iks ·r′

.

(22)
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Using the stationary solution of Eq. (15) for a spherically
symmetric distribution and using the integral∫ π

0
dθ ′ sin θ ′Pn(cos θ ′)J0(k0r

′ sin θ sin θ ′)e−ik0r
′ cos θ cos θ ′

= 2i−njn(k0r
′)Pn(cos θ ), (23)

we obtain

ES(r,θ ) =−
(

E0

4πk0r

)
eik0(r−ct)

∞∑
n=0

(2n+1)λn

2δ+i(1+λn)
Pn(cos θ ),

(24)

where we used the relation � = d2k3
0/(2πh̄ε0). In the forward

direction (θ = 0), the scattered field is proportional to the
“phased” probability amplitude (20). Equation (24) provides
the angular distribution of the scattered radiation field. We can
also calculate the scattered intensity as

IS(r,θ,φ)

= cε0〈Ê†
SÊS〉

= cε0

(
dk2

0

4πε0r

)2
⎡
⎣ N∑

j=1

|βj |2+
∑
j �=m

β∗
mβje

−iks ·(rj −rm)

⎤
⎦ .

(25)

Passing to the continuous limit and using Eqs. (21), (22), and
(24), we obtain

IS(r,θ ) = I0

(4πk0r)2

[ ∞∑
n=0

(2n + 1)λn

4δ2 + (1 + λn)2

+
∣∣∣∣∣

∞∑
n=0

(2n + 1)λn

2δ + i(1 + λn)
Pn(cos θ )

∣∣∣∣∣
2
⎤
⎦ , (26)

where I0 = cε0E
2
0 . The scattered intensity is the sum of the

incoherent contribution, proportional to N [since λn ∝ N , see
Eq. (11)] and isotropic, and the superradiant contribution,
proportional to N2 and directed (for extended clouds) mainly
in the forward direction. Integrating over the solid angle, the
total scattered power is

PS = 2πr2
∫ π

0
dθ sin θIS(r,θ )

=
(

I0

4πk2
0

) ∞∑
n=0

(2n + 1)λn(1 + λn)

4δ2 + (1 + λn)2
, (27)

where we used the second of the identities of Eq. (19).

C. Radiation pressure force

The radiation force operator acting on the j th atom
is calculated from Eq. (1) as F̂j = −∇rj

Ĥ = F̂aj + F̂ej ,
where [3]

F̂aj = ih̄k0
�0

2
{σ̂j e

i(�0t−k0·rj ) − H.c.} (28)

F̂ej = ih̄
∑

k

kgk{â†
kσ̂j e

i(ωk−ωa )t−ik·rj − σ̂
†
j âke

−i(ωk−ωa )t+ik·rj }

(29)

are the forces due, respectively, to the absorption and emission
processes. In Eq. (29), we have neglected the counter-
rotating terms proportional to exp[±i(ωk + ωa)t]. We are here
interested in the average radiation force F̂ = (1/N)

∑
j F̂j ,

which stands for the force acting on the center-of-mass of
the atomic cloud along the direction of the incident field,
k0 = k0êz. This average force is relatively easy to measure
by time-of-flight techniques in cold atomic clouds released,
for instance, from magneto-optical traps (MOTs) and has
recently revealed cooperative effects in the scattering by
extended atomic samples [7,8]. It may provide a convenient
measurement (aside from the scattered radiation) of the effects
that cooperative scattering imprints on the atoms. The average
absorption force along the z-axis, resulting from the recoil
received upon absorption of a photon from the incident
laser, is

F̂a = i

2N
h̄k0�0

N∑
j=1

[σ̂j e
i�0t−ik0·rj − H.c.]. (30)

The second contribution F̂e = (1/N )
∑

j F̂ej results from the
emission of a photon into any direction k. Inserting âk from
Eq. (5) into Eq. (29) and approximating the sum over the modes
k by an integral, it is possible to obtain, in a way similar as done
for the radiation field operator ÊS of Eq. (A5), the following
expression for the average emission force along the z-axis [3]:

F̂e = −h̄k0�

8πN

∫ 2π

0
dφ

∫ π

0
dθ sin θ cos θ

×
N∑

j,m=1

[e−ik·(rj −rm)σ̂ †
mσ̂j + H.c.]. (31)

Evaluating their expectation values on the state of Eq. (2)
(neglecting virtual photon contributions), the emission force
in the discrete model is

〈Fe〉 = −h̄k0�

8πN

∫ 2π

0
dφ

∫ π

0
dθ sin θ cos θ

×
N∑

j,m=1

[βjβ
∗
me−ik·(rj −rm) + c.c.]

= i
h̄k0�

2N

N∑
j,m=1

(zj − zm)

|rj − rm| j1(k0|rj − rm|)(βjβ
∗
m − c.c.),

(32)

where we used the identity (B1) and j1(z) is the first-order
spherical Bessel function. Then, passing to the continuous
distribution limit, Eqs. (30) and (31) are approximated by

〈F̂a〉 = −h̄k0�0Im〈βe−ik0·r〉 (33)

〈F̂e〉 = −h̄k0
�

8πN

∫ 2π

0
dφ

∫ π

0
dθ sin θ cos θ

∫
drn(r)

×
∫

dr′n(r ′)[β(r)β∗(r′)e−ik·(r−r′) + c.c.]. (34)
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The absorption stationary force is readily obtained from
Eq. (20),

〈F̂a〉 = h̄k0
�2

0

�N

∞∑
n=0

(2n + 1)λn(1 + λn)

4δ2 + (1 + λn)2
, (35)

whereas a longer calculation, reported in Appendix B, yields
the emission stationary force,

〈Fe〉 = −h̄k0
2�2

0

�N

∞∑
n=0

× (n + 1)λnλn+1[4δ2 + (1 + λn)(1 + λn+1)]

[4δ2 + (1 + λn)2][4δ2 + (1 + λn+1)2]
. (36)

As expected, the absorption force pushes the atomic cloud in
the direction of the driving field, whereas the emission force
is oppositely directed and is proportional to N . Both forces
depend on N also through the collective decay rate �(1 + λn).
We observe that the absorption force of Eq. (35) is linked to
the scattered power of Eq. (27) by the relation

N〈F̂a〉 = 4π

(
PS

c

)
, (37)

i.e., the absorption force is proportional to the scattered power
per atom, PS/N .

Figure 1 compares the (a) absorption, (b) emission, and
(c) total forces vs. N for δ = 10 and a Gaussian density
profile with σ = 8 (where σ = k0σR), calculated using the
series (35) and (36) (circles) and N -body simulations [see
Eq. (4)] (dots). The eigenvalues λn for the Gaussian density
profile are given by Eq. (38). The forces are reported as a
ratio between the cooperative force and the single-atom force,
F1 = h̄k0��2

0/(4�2
0 + �2). The error bars correspond to the

standard deviation of the observables over eight realizations.
Figure 1(d) shows the total force vs. N for a different choice of
parameters, σ = 5 and δ = 200, for which the force exhibits a
maximum as a function of N [8]. We observe a good agreement
between the analytical solution of Eq. (35) and the N -body
simulations at large N , when effects due to the discreteness of
the system become negligible.

We recall that our expressions have been obtained in the
continuous density approximation, i.e., assuming a sample
with large optical thickness, i.e., N � σ 2, but sufficiently
dilute to neglect the collective Lamb shift, i.e., with a small
number of atoms in a cubic optical wavelength volume, N �
σ 3. These two conditions imply that the cloud size should be
much larger than the optical wavelength, σ � 1. Nevertheless,
our results remain valid also in the limit n(r) → 0, where,
in particular, the standard radiation pressure force, F1, is
recovered. However, at low densities, fluctuations will strongly
affect individual measurements of the radiation pressure force,

10
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FIG. 1. (a) Absorption, (b) emission, and (c) total forces vs. N for δ = 10 and a Gaussian cloud with σ = 8. (d) Total force for σ = 5
and δ = 200. Forces are relative to the single-atom force F1. The plain curves refer to the series (35), (36), and their sum; the circles to the
analytical expressions (46), (36), and their sum; the dots to N -body simulations [see Eq. (4)] and the dash-dotted lines to the STD state. The
error bars correspond to the standard deviation of the observables over eight realizations.
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and in this regime our expressions represent only the average
expectation values.

V. LARGE GAUSSIAN CLOUDS

Large clouds (σ � 1) behaves fundamentally differently
from small clouds (σ � 1), as can be deduced from their
spectrum. Let us, for example, consider the case of Gaussian
clouds, with density n(r) = [N/(2π )3/2σ 3

R] exp(−r2/2σ 2
R).

The spectrum then reads

λn = N

√
2

π

∫ ∞

0
ρ2e−ρ2/2j 2

n (σρ)dρ

= N

√
π

2σ 2
e−σ 2

In+1/2(σ 2), (38)

where σ = k0σR is the scaled size of the cloud, and In(x)
the nth modified Bessel function. Recently the spectrum
λn for an uniform spherical cloud has been calculated by
Svidzinsky et al. [6,16], also for the exponential kernel of
Eq. (3). However, a Gaussian distribution is certainly more
realistic for experiments with cold dense atomic ensembles.
Generally, the spectrum of small clouds (σ � 1) is composed
of a few significant eigen modes, whereas for σ large, all the
eigenmodes for n < σ are significant and the spectrum can be
treated as a continuum. In particular, in the latter case the λn

can be approximated, for n < σ , by λn ∼ (N/2σ 2) exp[−(n +
1/2)2/2σ 2] (see, e.g., Ref. [17]). Switching to a continuous
treatment of the spectrum, we define η = n + 1/2 and get

λη = N

2σ 2
e−η2/(2σ 2). (39)

∞∑
n=0

(2n + 1) → 2
∫ ∞

0
ηdη. (40)

Remark that using these definitions, the completeness condi-

tion Eq. (16) is still preserved. The continuous spectrum limit
allows for the evaluation of the sums in Eqs. (20) and (21) as
continuous integrals

〈βse
−ik0·r〉 = 2�0

�N

∫ ∞

0

ληηdη

2δ + i(1 + λη)

= �0

�

6

b0

∫ b0/6

0

dx

2δ + i(1 + x)
(41)

〈|βs |2〉 = 2�2
0

�2N

∫ ∞

0

ληηdη

4δ2 + (1 + λη)2

=
(

�0

�

)2 6

b0

∫ b0/6

0

dx

4δ2 + (1 + x)2
, (42)

where we have set x = (b0/6) exp(−η2/2σ 2), with b0 =
3N/σ 2 the optical thickness. The above expressions
integrate as

〈βse
−ik0·r〉 =

(
�0

�

)
3

b0

{
2 arctan

[
b0

3

δ

1 + 4δ2 + b0/6

]

−i ln

[
1 + b0

3

1 + b0/12

1 + 4δ2

]}
(43)

〈|βs |2〉 =
(

�0

�

)2 3

δb0
arctan

[
δb0/3

1 + 4δ2 + b0/6

]
. (44)

These formulas highlight the prominent role of the parameters

b0 and δ in the high-density limit. In a similar way, we calculate
the total scattered power as

PS = I0N

4πk2
0

∫ 1

0
dx

1 + (b0/6)x

4δ2 + [1 + (b0/6)x]2

= I0σ
2
R

4π
ln

[
1 + b0

3

1 + b0/12

1 + 4δ2

]
. (45)

As expected, for small optical thickness (b0 � 1), the scattered
power is incoherent, PS ≈ [I0N/(4πk2

0)]/(4δ2 + 1). However,
for large optical thickness it shows a logarithmic dependence
on N . The superradiant character of the radiation is visible
only observing the scattered intensity in the forward direction
[see the second term of Eq. (26)] but not in the total scattered
power.

The absorption force is deduced from Eqs. (33) and (43)
as

〈F̂a〉 = h̄k0
3�2

0

b0�
ln

[
1 + b0

3

1 + b0/12

1 + 4δ2

]
. (46)

The emission force can be written, in the continuous
spectrum approximation in the integral form

〈F̂e〉 = −h̄k0
�2

0b0

6�
e−1/(4σ 2)

∫ ∞

1/σ

dy
ye−y2{4δ2 + [1 + (b0/6)e−(y+1/2σ )2/2][1 + (b0/6)e−(y−1/2σ )2/2]}

{4δ2 + [1 + (b0/6)e−(y+1/2σ )2/2]2}{4δ2 + [1 + (b0/6)e−(y−1/2σ )2/2]2} , (47)

where we have set y = (η + 1)/σ . As can be observed in
Fig. 1, the continuous-spectrum approximation gives excellent
results compared to the full series Eqs. (35) and (36). In the
limit σ → ∞ and finite b0, Eq. (47) would lead to

〈F̂e〉 ≈ −〈F̂a〉 + h̄k0�〈|βs |2〉, (48)

which has a transparent interpretation: for a very large cloud,
the atoms scatter radiation to forward direction and the recoil

received by the atoms upon emission cancels out with the recoil
received by absorbing a photon from the driving field. The
net force remaining after the substraction is the noncollective
contribution to the emission. The net force is equal to the
photon momentum h̄k0 times the emission rate �〈|βs |2〉. This
emission rate depends indirectly on N and σ through the
enhanced superradiant decay, �(N/4σ 2), which decreases the
emission rate when the optical thickness increases. A more
accurate expression of the emission force valid for large but
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finite cloud size would require the exact evaluation of the
integral in Eq. (47).

VI. SYMMETRIC TIMED DICKE STATE

A particular ansatz used by Scully and coworkers [2,6,16]
is the symmetric timed Dicke (STD) state, given by

β(r,t) = βT D(t)eik0·r. (49)

After integration over space of Eq. (6), one obtains the
following evolution equation:

dβT D(t)

dt
=

[
i�0 − �

2
(1 + Ns∞)

]
βT D(t) − i

�0

2
, (50)

where s∞ is the integrated structure factor of the cloud
defined as

s∞ = 1

N2

∫
n(r)dr

∫
dr′n(r′)

sin(k0|r − r′|)
k0|r − r′| e−ik0·(r−r′)

= 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ |〈ei(k0−k)·r〉|2. (51)

This ansatz is of particular interest, since it allows to evidence,
e.g., the superradiant nature of the decay when the pump is
turned off [19]. As for its steady-state, it reads [3,7]

βT D = �0

�

1

2δ + i(1 + Ns∞)
, (52)

and for a large cloud with Gaussian distribution, since s∞ ≈
1/4σ 2, we get

βT D = �0

�

1

2δ + i(1 + b0/12)
. (53)

Thus, the STD solution of Eq. (53) approximates the exact
result of Eq. (44) only for b0 � 12,

|βT D|2 ≈
(

�0

�

)2 1

4δ2 + (1 + b0/6)
. (54)

Figure 2 shows the average excitation probability 〈|βs |2〉
(left) and its variance, σ 2

β = 〈|βs |2〉 − |〈βse
−ik0.r〉|2 vs. N for

σ = 10 and δ = 10. The plain curves refer to the analytical
Eqs. (43) and (44), the circles to series Eqs. (20) and (21), the
dots to N -body simulations (see Eq. (4)), and the dash-dotted
lines to the STD state Eq. (49). The error bars correspond
to the standard deviation of the observables over different
realizations. Note that for the STD state, σβ = 0; for too small
N , the approximation Eqs. (43) and (44) provide inconsistent
results, that is negative σ 2

β . We observe excellent agreement
between the series and the analytical solutions, and a consistent
reduction of the excitation probability decrease vs. N with
respect to the TDS prediction (dashed line in Fig. 2, left).
Also, the fluctuations obtained from the N -body simulations
converge for large values of N toward the results obtained in
the continuous density approximation (Fig. 2, left), showing
the presence of a shot-noise contribution for small N .

The radiation force for the STD ansatz Eq. (49) is [3,7,8]

〈F̂ 〉 = 〈F̂a〉 + 〈F̂e〉 = h̄k0[−�0Im(βT D) − �|βT D|2Nf∞],

(55)

where

f∞ = 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ cos θ |〈ei(k0−k)·r〉|2. (56)

Since for a spherically Gaussian distribution N (s∞ − f∞) ≈
N/(8σ 4) = b0/(24σ 2), from Eq. (52) the stationary radiation
force is [3,7,8]

〈F̂ 〉 = h̄k0�

(
�0

�

)2 1 + N (s∞ − f∞)

4δ2 + (1 + Ns∞)2
(57)

≈ h̄k0�

(
�0

�

)2 1 + b0/24σ 2

4δ2 + (1 + b0/12)2
. (58)

As can be observed in Fig. 1, the STD state yields a good
agreement with the full-spectrum approach and the N -body
simulations only for small values of the optical thickness.

Finally, for that state Eq. (49) the scattered radiation electric
field, Eq. (A5), and intensity, Eq. (25), become

ES(r,θ,φ,t) = dk2
0

4πε0r
eik0(r−ct)βT D(t)〈ei(k0−k)·r〉 (59)

10
0

10
2

10
4

10
−4

10
−3

10
−2

N

<
|β

S|2 >

10
0

10
2

10
4

10
−15

10
−10

10
−5

10
0

N

σ β2

FIG. 2. Average excitation probability 〈|βs |2〉 (left) and variance σ 2
β = 〈|βs |2〉 − |〈βse

−ik0 .r〉|2 (right) vs. N . The plain curves refer to the
analytical Eqs. (43) and (44), the circles to series Eqs. (20) and (21), the dots to N -body simulations (see Eq. (4)), and the dash-dotted lines
to the STD state. The error bars correspond to the standard deviation of the observables over eight realizations. Note that for the STD state,
σβ = 0; for too small N , the approximation Eqs. (43) and (44) provide inconsistent results, that is negative σβ . Simulations realized for σ = 10
and δ = 10.
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FIG. 3. (Color online) Phase φβ of the excitation amplitude βs (left), Excitation probability |βs |2 of the atoms in the (x,z) plane (y = 0)
(center) and contribution to the radiation of the electric field in the same plane, which corresponds to the level of excitation of the atoms
weighted by their local density (right). Simulations realized using the analytic expressions (15), for N = 104, σ = 10, and δ = 10.

and

IS(r,θ,φ) = cε0

(
dk2

0

4πε0r

)2

|βT D|2[N + N2|〈ei(k0−k)·r〉|2].

(60)

In particular, for a Gaussian distribution, 〈exp[i(k0 − k) ·
r]〉 = exp[−σ 2(1 − cos θ )/2].

Figure 3 shows the phase of the excitation amplitude βs

(left) and the excitation probability, |βs |2 (center), in the (x,z)
plane (y = 0), calculated from the exact solution of Eq. (15),
for N = 104, σ = 10, and δ = 10. Figure 3 (right) shows the
contribution to the electric field radiation in the same plane,
weighted by the local atomic density. The simplification of
the STD state, as compared to the exact solution of Eq. (15),
resides in the assumption that all atoms are equally excited
and oscillate in phase. According to the exact calculation,
the atomic dipoles appear to be in phase only in the core of
the cloud (see Fig. 3, left), but this phase profile has strong
distortion away from it. This phenomenon is all the more
important as the atoms are much more excited in the peripheral
region than in the core (see Fig. 3, center). In particular, even
when this excitation probability is weighted by the particle
density, two areas at the cloud entrance and exit contribute
significantly to the radiation electric field of Eq. (24) (see
peaked structures in Fig. 3, right). For a STD state, both the
phase profile and average excitation remain flat throughout
the cloud. From a macroscopic point of view, the STD state

−1 −0.5 0 0.5 1
−10

−5

0

5

10

z/σ

Δ
φ

10
0

10
5

10
10

−2

−1.5

−1

−0.5

0

0.5

N

Δ
φ

FIG. 4. Left: Phase shift along the optical axis for the exact
solution (15) (plain line) and a STD state (49) (dash-dotted line).
Right: Phase shift of the pump beam after transmission through the
cloud as a function of N evaluated along the axis, x = y = 0, at
k0z = 20σ , for N = 104, σ = 10, and δ = 10.

neglects phase shifts imprinted into the pump beam by the
cloud’s reflective index. This can be seen in Fig. 4(a), which
compares the phase of the STD state, βT D exp(ik0 · r) (linear
curve, no phase shift), and βs(r) (additional phase-shift) along
the optical axis across the cloud. Figure 4(b) shows the pump
beam phase shift after transmission through the atomic cloud
as a function of atom number. This phase shift is at the origin of
the deviation between the radiation pressure forces calculated
for the STD state and the exact solution. The pump beam phase
shift leads to a reduction of the absorption and the emission
forces. This can be understood as destructive interference of
forward radiation emitted from different atoms, located at the
same plane z = z0 but different x or y.

As for the emitted wave, it is concentrated in the forward
direction (see Fig. 5, left), and there is no backscattering (not
shown here). The wavefront phase does not exhibit significant
distortion in the central region of the radiated beam (see Fig. 5,
right).

VII. CONCLUSIONS

In summary, we studied collective scattering from a dense
and large atomic cloud with Gaussian density profile in terms
of the eigenvalues of the interaction operator. This enabled
us to calculate the state generated by the interaction with a
laser beam. We found that this state considerably deviates
from the “timed Dicke” state at high optical densities. In
order to characterize this state, we calculated the phase front

FIG. 5. (Color online) Transverse intensity profile (left) of the
wave emitted by the cloud, at z = 3σ and its wavefront (right).
Simulations realized using the analytic Eq. (24), for N = 104,
σ = 10, and δ = 10.
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of the excited atomic dipole moments and the force due to
cooperative scattering by the atomic cloud.

Our approach consisted in expanding the solution on
spherical harmonics, which form a complete orthogonal
basis of the Hermitian interaction matrix. Under the as-
sumption that the system is sufficiently dilute to neglect
short-range effects due to dipole-dipole interactions, the
continuous spectrum approximation allows to transform in-
finite series into solvable integrals and eventually to derive
analytical expressions for the most relevant observables,
such as the scattered intensity and radiation pressure force.
These analytical expressions show good agreement with the
numerical solution of the N -body problem and highlight
the dependence on the accessible experimental parameters,
such as optical thickness, atomic cloud size, and laser
frequency.

The analytical solution appears particularly useful for
studying the thermodynamic limit when N → ∞ and V → ∞
with N/V fixed, until collisions or nonresonant interactions
come into play. The thermodynamic limit is hardly accessible
to N -body simulations, since the latter are highly CPU
consuming.

In contrast, the eigenvalue approach opens the possibility
to study the fascinating link between microscopic and macro-
scopic domains of light scattering and in particular between
single-atom scattering and Mie scattering for extended contin-
uous samples [5].

For large optical thickness, the refraction index of the
cloud acts back on the driving field and shifts its phase.
For this reason, the solution for large optical thickness
shows appreciable deviations from that obtained assuming
a symmetric timed Dicke state for the atomic sample, since
the latter corresponds to a completely degenerate eigenvalue
spectrum. The exact solution of Eq. (15) takes into ac-
count the induced phase shift and reduces to the symmetric
timed Dicke state in the limit of relatively small optical
thickness.

An important further development of the present study
should be to understand how the dipole-dipole interactions
contribute to the observed cooperative effects, completing
in this way the cooperative scattering description for highly
compressed and dense atomic clouds.
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APPENDIX A: DERIVATION OF THE SCATTERED
ELECTRIC FIELD

The scattered radiation is provided by the positive-
frequency part of the electric field operator,

ÊS(r,t) =
∑

k

Ekâk(t)eik·r−iωkt , (A1)

where Ek = (h̄ωk/2ε0Vph)1/2. Integrating Eq. (5) with ak(0) =
0, inserting it in Eq. (A1), and approximating the sum over the
modes k by an integral, we obtain

ÊS(r,t) = −i
Vph

8π3

N∑
m=1

∫ t

0
dt ′σ̂m(t − t ′)eiωat

′

×
∫

dk Ekgke
ik·(r−rm)−ickt ′ . (A2)

Introducing spherical coordinates, dk = dkk2dφdθ sin θ , and
integrating the angular part, Eq. (A2) becomes

ÊS(r,t) = − Vph

4π2

N∑
m=1

1

|r − rm|
∫ t

0
dt ′σ̂m(t − t ′)eiωat

′

×
∫ ∞

0
dkk Ekgk{e−ick(t ′−|r−rm|/c)

− e−ick(t ′+|r−rm|/c)}. (A3)

Assuming the radiation spectrum centered around k ≈ k0,
we approximate kEkgk ≈ k0Ek0gk0 . Then, extending the lower
limit of integration of k to −∞, we obtain for t < |r −
rm|/c [5,23]

ÊS(r,t) ≈ − dk2
0

4πε0

N∑
m=1

eik0|r−rm|

|r − rm| σ̂m(t − |r − rm|/c). (A4)

Neglecting the radiation retard in the limit t � σR/c, where
σR is the cloud size, and approximating in the far field limit
|r − rm| ≈ r − n̂ · rm, where n̂ = r/r , Eq. (A4) becomes

ÊS(r,θ,φ,t) ≈ − dk2
0

4πε0r
eik0(r−ct)+i�0t

N∑
m=1

σ̂m(t)e−iks ·rm, (A5)

where ks = k0(sin θ cos φ, sin θ sin φ, cos θ ). When applied
on the state of Eq. (2), neglecting virtual transitions, it
yields ÊS |�〉 = ES |g1 . . . gN 〉 and where ES , in the continuous
density approximation will be given by Eq. (22).

APPENDIX B: DERIVATION OF EQ. (36)

The angular integral in Eq. (34) is∫ 2π

0
dφ

∫ π

0
dθ sin θ cos θe−ik·(r−r′)

= 4πi
z − z′

|r − r′|j1(k0|r − r′|). (B1)

Since

∂

∂z
j0(k0|r − r′|) = −k0

(z − z′)
|r − r′| j1(k0|r − r′|),

where j0(x) = sin(x)/x, Eq. (34) can be written as

〈F̂e〉 = −i
h̄k0�

2N

∫
drn(r)

{
β(r)

∂

∂(k0z)

×
∫

dr′n(r ′)j0(k0|r − r′|)β∗(r′) − c.c.

}
. (B2)
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Using the expansion Eqs. (7), (9), (8), and (11), we obtain∫
dr′n(r′)j0(k0|r − r′|)β∗(r′) =

∞∑
n=0

n∑
m=−n

α∗
nmλnjn(k0r)Y ∗

nm(θ,φ). (B3)

In spherical coordinates,

∂

∂z
= cos θ

∂

∂r
+ sin2 θ

r

∂

∂ cos θ
,

and

〈F̂e〉 = −i
h̄k0�

2N

∫
drn(r)

{
β(r)

∞∑
n=0

n∑
m=−n

α∗
nmλn

(
cos θ

∂

∂(k0r)
+ sin2 θ

k0r

∂

∂ cos θ

)
jn(k0r)Y ∗

nm(θ,φ) − c.c.

}
(B4)

Still using Eq. (9),

〈F̂e〉 = −h̄k0�

2N

∞∑
p=0

p∑
q=−p

∞∑
n=0

n∑
m=−n

λn

∫ ∞

0
drr2n(r)jp(k0r)

∫ 2π

0
dφ

∫ π

0
dθ sin θ

×
{

∂jn(k0r)

∂(k0r)
cos θ Ypq(θ,φ)Y ∗

nm(θ,φ) + jn(k0r)

k0r
sin2 θ Ypq(θ,φ)

∂Y ∗
nm(θ,φ)

∂(cos θ )

}
i(αpqα

∗
nm − c.c.). (B5)

Assuming as before

αnm = αnδm,0,

and since

Yn0(θ,φ) =
√

2n + 1

4π
Pn(cos θ ),

Eq. (B5) becomes

〈F̂e〉 = −h̄k0�

4N

∞∑
p=0

∞∑
n=0

λn

√
(2n + 1)(2p + 1)

∫ ∞

0
drr2n(r)jp(k0r)

∫ π

0
dθ sin θ

×
{

∂jn(k0r)

∂(k0r)
cos θ Pp(cos θ )Pn(cos θ ) + jn(k0r)

k0r
sin2 θ Pp(cos θ )

∂Pn(cos θ )

∂(cos θ )

}
i(αpα∗

n − c.c.). (B6)

Since ∫ π

0
dθ sin θ cos θ Pp(cos θ )Pn(cos θ ) =

∫ 1

−1
dxxPn(x)Pp(x)

and ∫ π

0
dθ sin3 θPp(cos θ )

∂Pn(cos θ )

∂(cos θ )
=

∫ 1

−1
dx(1 − x2)Pp(x)

d

dx
Pn(x),

using the identities

(2p + 1)xPp(x) = (p + 1)Pp+1(x) + pPp−1(x),

(x2 − 1)
dPn(x)

dx
= n [xPn(x) − Pn−1(x)] ,

and ∫ 1

−1
dxPn(x)Pp(x) = 2

2n + 1
δn,p,

we obtain ∫ 1

−1
dxxPn(x)Pp(x) = 2

(2p + 1)(2n + 1)
{(p + 1)δn,p+1 + p δp,n+1}

and ∫ 1

−1
dx(x2 − 1)Pp(x)

d

dx
Pn(x) = 2n

(2n + 1)(2p + 1)
{p δp,n+1 − (n + 1)δn,p+1}.
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By substituting these expressions in Eq. (B6), we obtain

〈F̂e〉 = −h̄k0�

2N

∞∑
p=0

∞∑
n=0

i(αpα∗
n − c.c.)

λn√
(2n + 1)(2p + 1)

∫ ∞

0
drr2n(r)jp(k0r)

×
{

(p + 1)

[
∂jp+1(k0r)

∂(k0r)
+ (p + 2)

jp+1(k0r)

k0r

]
δn,p+1 + p

[
∂jn(k0r)

∂(k0r)
− n

jn(k0r)

k0r

]
δp,n+1

}
. (B7)

Since
djn+1(z)

dz
= jn(z) − n + 2

z
jn+1(z),

and
djn(z)

dz
= −jn+1(z) + n

z
jn(z),

using the definition Eq. (11),

〈F̂e〉 = −h̄k0�

8πN

∞∑
p=0

∞∑
n=0

i(αpα∗
n − c.c.)

λnλp√
(2n + 1)(2p + 1)

{(p + 1)δn,p+1 − pδp,n+1}. (B8)

Eliminating one of the two sums, we obtain

〈F̂e〉 = −h̄k0�

4πN

∞∑
n=0

(n + 1)λnλn+1√
(2n + 1)(2n + 3)

i(αnα
∗
n+1 − c.c.). (B9)

In the stationary case,

αn = �0

�

in
√

4π (2n + 1)

2δ + i(1 + λn)
,

and the stationary force is

〈Fe〉 = −h̄k0
2�2

0

�N

∞∑
n=0

(n + 1)λnλn+1[4δ2 + (1 + λn)(1 + λn+1)]

[4δ2 + (1 + λn)2][4δ2 + (1 + λn+1)2]
. (B10)
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